(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0
min(add(n, x)) → minIter(add(n, x), add(n, x), 0)
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
eq, le, app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
eq < rm
eq < minsort
le < minIter
app < minsort
rm < minsort

(6) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
eq, le, app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
eq < rm
eq < minsort
le < minIter
app < minsort
rm < minsort

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
le, app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
le < minIter
app < minsort
rm < minsort

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)

Induction Base:
le(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
le(gen_0':s4_0(+(n666_0, 1)), gen_0':s4_0(+(n666_0, 1))) →RΩ(1)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
app, minIter, rm, minsort

They will be analysed ascendingly in the following order:
app < minsort
rm < minsort

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)

Induction Base:
app(gen_nil:add5_0(0), gen_nil:add5_0(b)) →RΩ(1)
gen_nil:add5_0(b)

Induction Step:
app(gen_nil:add5_0(+(n1097_0, 1)), gen_nil:add5_0(b)) →RΩ(1)
add(0', app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b))) →IH
add(0', gen_nil:add5_0(+(b, c1098_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(14) Complex Obligation (BEST)

(15) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
minIter, rm, minsort

They will be analysed ascendingly in the following order:
rm < minsort

(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minIter.

(17) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
rm, minsort

They will be analysed ascendingly in the following order:
rm < minsort

(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
rm(gen_0':s4_0(0), gen_nil:add5_0(n2879_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n28790)

Induction Base:
rm(gen_0':s4_0(0), gen_nil:add5_0(0)) →RΩ(1)
nil

Induction Step:
rm(gen_0':s4_0(0), gen_nil:add5_0(+(n2879_0, 1))) →RΩ(1)
if_rm(eq(gen_0':s4_0(0), 0'), gen_0':s4_0(0), add(0', gen_nil:add5_0(n2879_0))) →LΩ(1)
if_rm(true, gen_0':s4_0(0), add(0', gen_nil:add5_0(n2879_0))) →RΩ(1)
rm(gen_0':s4_0(0), gen_nil:add5_0(n2879_0)) →IH
gen_nil:add5_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(19) Complex Obligation (BEST)

(20) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)
rm(gen_0':s4_0(0), gen_nil:add5_0(n2879_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n28790)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

The following defined symbols remain to be analysed:
minsort

(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minsort.

(22) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)
rm(gen_0':s4_0(0), gen_nil:add5_0(n2879_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n28790)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(24) BOUNDS(n^1, INF)

(25) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)
rm(gen_0':s4_0(0), gen_nil:add5_0(n2879_0)) → gen_nil:add5_0(0), rt ∈ Ω(1 + n28790)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(27) BOUNDS(n^1, INF)

(28) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)
app(gen_nil:add5_0(n1097_0), gen_nil:add5_0(b)) → gen_nil:add5_0(+(n1097_0, b)), rt ∈ Ω(1 + n10970)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(30) BOUNDS(n^1, INF)

(31) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
le(gen_0':s4_0(n666_0), gen_0':s4_0(n666_0)) → true, rt ∈ Ω(1 + n6660)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(33) BOUNDS(n^1, INF)

(34) Obligation:

Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(nil) → 0'
min(add(n, x)) → minIter(add(n, x), add(n, x), 0')
minIter(nil, add(n, y), m) → minIter(add(n, y), add(n, y), s(m))
minIter(add(n, x), y, m) → if_min(le(n, m), x, y, m)
if_min(true, x, y, m) → m
if_min(false, x, y, m) → minIter(x, y, m)
head(add(n, x)) → n
tail(add(n, x)) → x
tail(nil) → nil
null(nil) → true
null(add(n, x)) → false
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
le :: 0':s → 0':s → true:false
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: 0':s → nil:add → nil:add
min :: nil:add → 0':s
minIter :: nil:add → nil:add → 0':s → 0':s
if_min :: true:false → nil:add → nil:add → 0':s → 0':s
head :: nil:add → 0':s
tail :: nil:add → nil:add
null :: nil:add → true:false
rm :: 0':s → nil:add → nil:add
if_rm :: true:false → 0':s → nil:add → nil:add
minsort :: nil:add → nil:add → nil:add
if_minsort :: true:false → nil:add → nil:add → nil:add
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_nil:add3_0 :: nil:add
gen_0':s4_0 :: Nat → 0':s
gen_nil:add5_0 :: Nat → nil:add

Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:add5_0(0) ⇔ nil
gen_nil:add5_0(+(x, 1)) ⇔ add(0', gen_nil:add5_0(x))

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(36) BOUNDS(n^1, INF)